nostr_types/types/
key_signer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
use crate::{
    ContentEncryptionAlgorithm, EncryptedPrivateKey, Error, Id, KeySecurity, PrivateKey, PublicKey,
    Signature, Signer,
};
use std::fmt;

/// Signer with a local private key (and public key)
pub struct KeySigner {
    encrypted_private_key: EncryptedPrivateKey,
    public_key: PublicKey,
    private_key: Option<PrivateKey>,
}

impl fmt::Debug for KeySigner {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        f.debug_struct("KeySigner")
            .field("encrypted_private_key", &self.encrypted_private_key)
            .field("public_key", &self.public_key)
            .finish()
    }
}

impl KeySigner {
    /// Create a Signer from an `EncryptedPrivateKey`
    pub fn from_locked_parts(epk: EncryptedPrivateKey, pk: PublicKey) -> Self {
        Self {
            encrypted_private_key: epk,
            public_key: pk,
            private_key: None,
        }
    }

    /// Create a Signer from a `PrivateKey`
    pub fn from_private_key(privk: PrivateKey, password: &str, log_n: u8) -> Result<Self, Error> {
        let epk = privk.export_encrypted(password, log_n)?;
        Ok(Self {
            encrypted_private_key: epk,
            public_key: privk.public_key(),
            private_key: Some(privk),
        })
    }

    /// Create a Signer from an `EncryptedPrivateKey` and a password to unlock it
    pub fn from_encrypted_private_key(epk: EncryptedPrivateKey, pass: &str) -> Result<Self, Error> {
        let priv_key = epk.decrypt(pass)?;
        let pub_key = priv_key.public_key();
        Ok(Self::from_locked_parts(epk, pub_key))
    }

    /// Create a Signer by generating a new `PrivateKey`
    pub fn generate(password: &str, log_n: u8) -> Result<Self, Error> {
        let privk = PrivateKey::generate();
        let epk = privk.export_encrypted(password, log_n)?;
        Ok(Self {
            encrypted_private_key: epk,
            public_key: privk.public_key(),
            private_key: Some(privk),
        })
    }
}

impl Signer for KeySigner {
    fn is_locked(&self) -> bool {
        self.private_key.is_none()
    }

    fn unlock(&mut self, password: &str) -> Result<(), Error> {
        if !self.is_locked() {
            return Ok(());
        }

        let private_key = match self.encrypted_private_key.decrypt(password) {
            Ok(pk) => pk,
            Err(e) => return Err(e),
        };

        self.private_key = Some(private_key);

        Ok(())
    }

    fn lock(&mut self) {
        self.private_key = None;
    }

    fn change_passphrase(&mut self, old: &str, new: &str, log_n: u8) -> Result<(), Error> {
        let private_key = self.encrypted_private_key.decrypt(old)?;
        self.encrypted_private_key = private_key.export_encrypted(new, log_n)?;
        self.private_key = Some(private_key);
        Ok(())
    }

    fn upgrade(&mut self, pass: &str, log_n: u8) -> Result<(), Error> {
        let private_key = self.encrypted_private_key.decrypt(pass)?;
        self.encrypted_private_key = private_key.export_encrypted(pass, log_n)?;
        Ok(())
    }

    fn public_key(&self) -> PublicKey {
        self.public_key
    }

    fn encrypted_private_key(&self) -> Option<&EncryptedPrivateKey> {
        Some(&self.encrypted_private_key)
    }

    fn sign_id(&self, id: Id) -> Result<Signature, Error> {
        match &self.private_key {
            Some(pk) => pk.sign_id(id),
            None => Err(Error::SignerIsLocked),
        }
    }

    fn sign(&self, message: &[u8]) -> Result<Signature, Error> {
        match &self.private_key {
            Some(pk) => pk.sign(message),
            None => Err(Error::SignerIsLocked),
        }
    }

    fn encrypt(
        &self,
        other: &PublicKey,
        plaintext: &str,
        algo: ContentEncryptionAlgorithm,
    ) -> Result<String, Error> {
        match &self.private_key {
            Some(pk) => pk.encrypt(other, plaintext, algo),
            None => Err(Error::SignerIsLocked),
        }
    }

    fn decrypt(&self, other: &PublicKey, ciphertext: &str) -> Result<String, Error> {
        match &self.private_key {
            Some(pk) => pk.decrypt(other, ciphertext),
            None => Err(Error::SignerIsLocked),
        }
    }

    fn nip44_conversation_key(&self, other: &PublicKey) -> Result<[u8; 32], Error> {
        let xpub = other.as_xonly_public_key();
        match &self.private_key {
            Some(pk) => Ok(nip44::get_conversation_key(pk.as_secret_key(), xpub)),
            None => Err(Error::SignerIsLocked),
        }
    }

    fn export_private_key_in_hex(
        &mut self,
        pass: &str,
        log_n: u8,
    ) -> Result<(String, bool), Error> {
        if let Some(pk) = &mut self.private_key {
            // Test password and check key security
            let pkcheck = self.encrypted_private_key.decrypt(pass)?;

            // side effect: this may downgrade the key security of self.private_key
            let output = pk.as_hex_string();

            // If key security changed, re-export
            let mut downgraded = false;
            if pk.key_security() != pkcheck.key_security() {
                downgraded = true;
                self.encrypted_private_key = pk.export_encrypted(pass, log_n)?;
            }
            Ok((output, downgraded))
        } else {
            Err(Error::SignerIsLocked)
        }
    }

    fn export_private_key_in_bech32(
        &mut self,
        pass: &str,
        log_n: u8,
    ) -> Result<(String, bool), Error> {
        if let Some(pk) = &mut self.private_key {
            // Test password and check key security
            let pkcheck = self.encrypted_private_key.decrypt(pass)?;

            // side effect: this may downgrade the key security of self.private_key
            let output = pk.as_bech32_string();

            // If key security changed, re-export
            let mut downgraded = false;
            if pk.key_security() != pkcheck.key_security() {
                downgraded = true;
                self.encrypted_private_key = pk.export_encrypted(pass, log_n)?;
            }

            Ok((output, downgraded))
        } else {
            Err(Error::SignerIsLocked)
        }
    }

    fn key_security(&self) -> Result<KeySecurity, Error> {
        match &self.private_key {
            Some(pk) => Ok(pk.key_security()),
            None => Err(Error::SignerIsLocked),
        }
    }
}